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Approximately Optimal Control of MDPs over a
Long Operation-Dependent Time Horizon and
Application to Battery Energy Storage Systems

Ioannis Kordonis, Alexandros C. Charalampidis, Pierre Haessig

Abstract—This paper considers a class of optimal control prob-
lem for Markov Decision Processes (MDPs), with a time horizon
which is both long and operation-dependent. The motivation
for this study comes from the optimal management problem
for grid-connected Battery Energy Storage Systems (BESSs).
As investment represents a large portion of the total cost, and
the BESSs can be used for a limited number of cycles only, it
is essential to maximize the benefits of using a BESS over its
lifetime, which, however, depends on its actual operation. First,
we prove that the considered class of optimal control problems
can be approximated by the minimization of the ratio of two
infinite-horizon average-cost problems. We then characterize the
optimal policy in terms of appropriate Bellman-type equations for
infinite-horizon average-cost problems. Furthermore, we propose
a relative-value-iteration-type algorithm and prove its conver-
gence. Finally, we present some numerical results illustrating the
efficiency of the proposed methods for the BESS application.
Index Terms— Stochastic optimal control, Markov Decision
Processes (MDPs), Energy systems, Optimization algorithms,
Battery energy storage systems

I. INTRODUCTION

This paper studies the optimal control of stochastic systems
over their lifetime, in the case where the lifetime depends
on their actual operation. This study’s motivation comes from
the study of the optimal operation of grid-connected Battery
Energy Storage Systems (BESSs). Batteries are expected to
play an essential role in the future power system. However,
despite the continuing battery cost reduction, the initial in-
vestment costs for BESSs remain high and constitute one of
the highest components of BESSs cost. Furthermore, batteries
are degrading due to calendar aging and usage (cycling aging),
and their lifetime depends on their actual operation. Thus, to
optimize the profits from a BESS operation, it is essential to
take into account the effects of BESS usage on its lifetime.
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Battery aging is a complex nonlinear phenomenon, and
various battery aging models have been proposed [1]. Still,
most of the works on optimal management of grid-connected
BESSs use simplified models. The articles [2]–[6] assume that
there is a certain cost for using the battery, proportional to the
initial investment cost. Other papers put certain constraints
on battery usage [7]–[9]. Another relevant idea is to use
separation of time scales [10], [11] (see also [12]). However,
most of the works do not consider the impact of BESS usage
on the problem’s time horizon. Notable exceptions are [13],
[14], which formulate the problem as a Stochastic Shortest
Path (SSP) problem. To achieve this, however, the state space
should be extended to include the total degradation up to the
current time step. This leads to huge state space cardinalities
and makes the analysis and optimization of detailed models
computationally difficult.

In this work, we study the general MDP optimal control
problem with long, operation-dependent time horizon, and ap-
proximately reformulate it into the problem of minimizing the
ratio of two long-time average-cost criteria. This latter problem
dates back to the 1960s, where problems with ratio objec-
tives were studied in the context of maintenance/replacement
scheduling [15], [16]. Derman in [15] proves the existence of
optimal strategies within the class of memory-less, stationary
policies, and reformulates the problem initially as a fractional
linear program and then as a linear program. Ratio objectives
also appear in the optimal control of Semi-Markov Decision
Processes (SMDPs) [17], [18] (see also [19], [20]). There is
also a large body of works applying Reinforcement Learning
schemes to SMDPs (e.g. [21]–[24]). Recently, similar prob-
lems involving a ratio of two long-time average-cost functions
were studied in the context of synthesizing systems that
achieve an optimal trade-off between a given cost and reward
model [25]–[27]. The primary technical difference of this work
with the ones mentioned above, besides the fact that we start
with a different original problem, is that in all these works,
the cost function in the denominator can take only positive
(or in some cases non-negative) values. However, there are
interesting problems involving long, operation-dependent time
horizon, for which the corresponding ratio objective has a
denominator that could take both positive and negative values
(see, for example, Section VII).

The technical contribution of the current work is the fol-
lowing. First, we show that the optimal control problems with
long, operation dependent time horizon can be approximated
by ratio cost problems. Second, we extend theory for the
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optimal control of cost functions with ratio objectives to
the case of indefinite denominators (namely, they could take
both positive and negative values), and provide appropriate
characterizations. Third, we propose an efficient, model-based
algorithm and prove its (exponential) convergence. The last
contribution is applying the proposed methods to a BESS
example, which has a long horizon, affected by battery degra-
dation.

The rest of this paper is organized as follows: Section II
introduces some notation and presents some results of Stochas-
tic Optimal Control theory. In Section III, the optimal control
problem with long operation-dependent time horizon is stated
and the approximate reduction to a ratio of two long-time
average-cost problems is proved. In Section IV, the optimal
policy is characterized in terms of a pair of coupled Bellman-
type equations. Section V derives a simpler characterization
of the optimal solution in terms of a single Bellman equation,
presents a relative-value-iteration-type algorithm and proves
its convergence. Section VI presents some numerical results,
for the BESS application. Finally, Section VIII summarizes
the main contributions of the current work.

II. BACKGROUND, NOTATION AND PRELIMINARY
RESULTS

We consider stochastic dynamics of the form:

xk+1 = f(xk, uk, wk), (1)

where xk represents the state variable, uk the control action
and wk a stochastic disturbance with known distribution de-
pending only on xk. We assume that xk has a finite state space
X = {1, . . . , n} and the admissible set of control actions uk
is a finite set U = {1, . . . , nU}. The controlled Markov chain
notation, pij(u) = P [xk+1 = j|xk = i, uk = u], will be also
used. We assume that the distribution of the initial condition
x0 is known.

A general policy is a function of the past states and
actions, and randomizes among the several possible actions.
Particularly, we define the history at time k as ηk =
(x0, u0, . . . , xk−1, uk−1, xk). A policy is a sequence µ =
(µ0, µ1, µ2, . . . ), where µk is a function that maps the history
ηk to a probability distribution over the feasible actions. This
is the most general class of policies considered in this work,
and it will be called ‘behavioral policies’. A policy µ is
called stationary if each µk depends only on the current
sate xk and µk = µ0. A subset of stationary policies is
the set of deterministic stationary policies i.e., policies where
µk(x) assigns the entire probability to a single element of
U , for all states x ∈ X . We denote the class of behavioral,
stationary, and deterministic stationary policies by Ub, Us, Ud,
respectively.

Let us state a couple of assumptions which are very common
in the literature (see for example Bertsekas’s textbook [19]).
Assumption 1: For the controlled Markov chain (1) it holds:
(a) (Weak Accessibility (WA)): The state space X can be

partitioned into two subsets Xc and Xt such that:
– The states in Xt are transient for all stationary

policies.

– For every pair of states i, j ∈ Xc, there is a stationary
policy µ and an integer k such that, under µ, it holds:

P (xk = j|x0 = i) > 0.

(b) (unichain assumption): For any stationary deterministic
policy, the closed loop Markov chain has a single irre-
ducible aperiodic ergodic class.

Let us note that the unichain assumption implies the weak
accessibility assumption.

There are several possible formulations for the cost func-
tions. This section, deals with the Long-Time Average (LTA)
cost (known also as average-cost per stage or ergodic cost).
We consider two different costs per stage g1(xk, uk) and
g2(xk, uk), where the first represents an actual cost per stage
and the second a degradation rate. The LTA cost is given by:

λs(µ, i) = lim
N→∞

1

N
E

[
N∑
k=1

gs(xk, uk)

∣∣∣∣∣x0 = i, uk = µk(xk)

]
,

(2)
for s = 1, 2. Note that under Assumption 1(b), for every
µ ∈ Us, the cost λs(µ, i) does not depend on i. In this case
we write λs(µ) in the place of λs(µ, i). Furthermore, under
Assumption 1.a, the optimal cost for the LTA minimization
problem, denoted by λ?s , is the same for all initial states.

The optimal policy µ? is stationary, and under Assumption
1.a, is characterized by the corresponding Bellman equation:

λs + hs(i) = min
u

gs(i, u) +

n∑
j=1

pij(u)hs(j)

 , (3)

for all i ∈ X , where hs is a vector in Rn called bias (e.g.
[19], [20]) and λs is the minimum LTA cost.

Following Bertsekas ([19]), let us introduce the ‘shorthand’
notation for this problem. For a stationary policy µ, denote
by Ts,µ the Bellman operator associated with the LTA cost
λs (with s = 1, 2), mapping a vector hs ∈ Rn to a vector
Ts,µhs ∈ Rn, given by:

(Ts,µhs)(i) = gs(i, µ(i)) +

n∑
j=1

pij(µ(i))hs(j). (4)

If the LTA cost under a stationary policy µ (not necessar-
ily optimal) is the same for all the initial conditions i.e.,
λs(µ, i) = λs,µ, for some real number λs,µ, then it holds
(Bellman equation for policy evaluation):

hs + λs,µ1 = Ts,µhs, (5)

where 1 is the n-vector of ones. Conversely if a vector hs ∈
Rn and a scalar λs,µ satisfy (5), then the LTA cost under µ is
equal to λs,µ, for every initial state.

A. Ratio of LTA Cost Problems

We are also interested in optimization problems, considering
the ratio of two LTA costs, in the form:

minimize
µ

λ1(µ, i)

λ2(µ, i)

subject to λ2(µ, i) > 0

. (6)
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The following proposition gives a geometric characteriza-
tion of the set of possible values of (λ1(µ, i), λ2(µ, i)), for
the different policies µ. This result will be used to prove that
there is a deterministic optimal policy solving (6).

Proposition 1: Under the weak accessibility assumption
(Assumption 1.a), there is a convex compact polygon D such
that:
(i) Assume that for a policy µ ∈ Ub the limits in (2) exist for

s = 1, 2. Then, (λ1(µ, i), λ2(µ, i)) ∈ D, for all i ∈ X .
(ii) For every vertex of D, with coordinates (λ̄1, λ̄2), there

is a deterministic stationary policy µ ∈ Ud such that, for
all i ∈ X , λ1(µ, i) = λ̄1 and λ2(µ, i) = λ̄2.

(iii) For every point (λ̄1, λ̄2) ∈ D there is a behavioral policy
µ ∈ Ub such that, for all i ∈ X , λ1(µ, i) = λ̄1 and
λ2(µ, i) = λ̄2.

Proof : See Appendix A.
We call D the ‘feasible region’. If for a policy µ ∈ Ud

there is a vertex of D with coordinates (λ̄1, λ̄2) such that
λ1(µ, i) = λ̄1 and λ2(µ, i) = λ̄2, for all i ∈ X , we call µ a
‘corner policy’.

Remark 1: Results similar to Proposition 1 appear in the
literature of constrained MDPs, under the unichain assumption
(e.g. [29]). The proof here is needed, because we use the more
general WA assumption.

III. PROBLEM FORMULATION AND APPROXIMATE
INFINITE-HORIZON REFORMULATION

In this section we present the general form of the optimal
control problem with operation-dependent time horizon, as
well as an infinite-horizon approximate reformulation. Con-
sider a dynamics in the form (1). Assume that the system has
initially a remaining life denoted by R i.e., R denotes the
initial total degradation capacity of the system. During time
period k, the remaining life is reduced by g2(xk, uk) (note
that g2 could be positive or negative). Thus, the time horizon
of the problem is random and it is given by the stopping time:

T = inf

{
t :

t∑
k=1

g2(xk, uk) ≥ R

}
. (7)

We are interested in solving the problem:

minimize
µ

Ja(µ) = lim
N→∞

E

[
T∧N−1∑
k=0

g1(xk, uk)

]
/R, (8)

where T ∧ N = min(T,N), µ = (µ1, µ2, . . . ) and uk
is computed according to µk(xk). In the rest of the paper
we refer to (8) as the ‘original problem’. The cost function
Ja represents the total cost over the operation-dependent
time horizon, scaled by the initial remaining life. Indeed, we
expect the total cost limN→∞E

[∑T∧N−1
k=0 g1(xk, uk)

]
to be

proportional to R, for large R, and thus we use the scaling by
R to make the cost approximately independent of it.

Remark 2: The original Problem (8) can be written as a
Stochastic Shortest Path problem. To this end, the system
state space should be extended to include the cumulative
degradation yk =

∑k
k′=1 g2(xk′ , uk′). Let Y denote the

possible values of yk. Then, a natural state space for (8) is

X̄ = X × Y . For large R the cardinality of the state space of
the problem becomes huge. In the case where g2(x, u) can
take negative values, Y becomes countably infinite. In the
next subsection, we propose an approximate reformulation of
Problem (8) as a ratio of two LTA costs, which allows an
efficient solution.

A. Problem Reformulation

We then perform a series of approximate transformations to
the original Problem (8), which eventually leads to a problem
with ratio objectives. Assuming that R is very large, we
approximate the original problem (8) by its ‘deterministic
horizon’ counterpart:

minimize
Td∈N


min
µ

E

[
Td∑
k=1

g1(xk, uk)

]
/R

subject to

∣∣∣∣∣
Td∑
k=1

E[g2(xk, uk)]−R

∣∣∣∣∣ ≤ Ḡ


,

(9)
where Td is a deterministic decision variable and Ḡ � R.
The constraint represents the fact that the expected discrete
degradation is approximately equal to R. The internal mini-
mization of (9) i.e., the corresponding problem with a large
fixed Td, can be further approximated by its infinite-horizon
counterpart. To this end, we use λ1(µ, i) and λ2(µ, i) defined
in (2).

The random variable T could take finite or infinite values.
However, we are interested in cases where, under the optimal
policy, the expected time horizon is finite and appropriate
assumptions will be made in the following (Assumption 2) to
ensure that this happens. There are two qualitatively distinct
cases. In the first case, there is a policy µ under which the
system is producing value i.e., λ1(µ, i) < 0. In this case we
are interested in delaying the stopping time T (keeping the
system alive), while enjoying negative costs. In the second
case, every policy produces losses i.e, for every policy µ it
holds λ1(µ, i) > 0. In this case, we are interested in making
the time horizon T as short as possible.

In the case where there exists a value producing policy, we
assume that if for a policy µ we have λ1(µ, i) < 0, then it also
holds λ2(µ, i) > 0. Otherwise, many of the system sample
paths would produce −∞ cost. Conversely, if all policies
produce losses we assume that there is a policy µ such that
λ2(µ, i) > 0. Otherwise, all the policies will lead to infinite
total cost. We will make thus the following assumption.
Assumption 2: For every initial condition i ∈ X one of the
following is true:

(a) (There exists a value producing policy) There is a
policy µ such that λ1(µ, i) < 0, and for every policy
µ′ it holds: either λ1(µ′, i) > 0 or λ2(µ′, i) > 0 (see
Figure 1.a).

(b) (All policies produce losses) For every policy µ, it holds
λ1(µ, i) > 0. Furthermore, there is a policy µ′ such that
λ2(µ′, i) > 0 (see Figure 1.b).
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Fig. 1: The dark gray areas in parts (a) and (b) of this figure
correspond to the feasible regions D, under Case (a) and
Case (b) of Assumption 2 respectively. The light gray areas
represent areas forbidden by Assumption 2. In both cases
we denote by F the point which is optimal for (10) (or
equivalently for (11)). If the manager of the system ignores
lifetime effects (degradation/regeneration) he/she will choose
the point F ′, which is the one minimizing λ1. In Case (a), it
turns out that F ′ gives larger benefits per unit time, but much
less time horizon compared with F , and thus it turns out to
be inefficient. In Case (b), F ′ produces the smallest possible
loss per unit time, but it leads to a negative λ2 and thus on
average these losses last forever and the total expected cost is
infinite.

The ‘deterministic horizon’ Problem (9) can be approxi-
mately restated as:

minimize
Td∈R+, µ

Jb(µ, i) = Tdλ1(µ, i)/R

subject to Tdλ2(µ, i) = R

λ2(µ) > 0

, (10)

for large R. Let us call this problem the ‘infinite-horizon
approximate problem’. Substituting the constraint back to the
objective, (10) can be equivalently stated as a ‘ratio cost
problem’:

minimize
µ

Jc(µ, i) = λ1(µ, i)/λ2(µ, i)

subject to λ2(µ) > 0
. (11)

We then show that if an optimal policy for the ‘ratio cost
problem’ is applied to the original Problem (8) it will be ε-
optimal.

Theorem 1 (Problem Approximation): Suppose that As-
sumption 1.a and Assumption 2 hold. Then:
(i) Problem (11) is feasible and there is a corner optimal

policy µ? ∈ Ud minimizing Jc for all i. Furthermore, the
optimal value is the same for all i ∈ X .

(ii) For every ε > 0, there is an R0 such that any corner opti-
mal policy for ‘ratio cost problem’ (11), is ε-optimal for
the original Problem (8), for any R > R0. Furthermore,
if for a policy µ, the original cost Ja is finite, then the
expected time horizon E[T ] is finite and the original cost
may be written equivalently as:

Ja = E

[
T∑
k=0

g1(xk, uk)

]
/R. (12)

Proof : See Appendix B. �

Remark 3: This is our last reformulation and (11) is an
important topic of the rest of this paper. While (11) has a
much smaller state space than (8), dynamic programming is
not directly applicable to it. In Sections IV and V we propose
techniques to solve (11) efficiently.

Remark 4: Problems involving the ratio of two LTA costs
have been already studied in the literature (e.g. [15] - [27]).
In these works the authors assume that the cost function in
the denominator g2 can take only positive (or non-negative)
values. Here we generalize the theory to the case where g2

can also take negative values.
Remark 5: Case (b) of Assumption 2 can be reduced to

case (a), using λ′1 = −λ2 and λ′2 = λ1. This transformation
corresponds to a 90◦ counterclockwise rotation of Figure 1.(b).

IV. FIXED POINT CHARACTERIZATION AND THE FPRVI
ALGORITHM

In this section, we characterize the corner optimal policies
of (11) in terms of a pair of coupled Bellman-type equations
(fixed point characterization). This characterization is then
used to propose a value iteration type algorithm.

A. Fixed Point Characterization of the Optimal Policy

Proposition 2 (Fixed Point Characterization): Suppose that
Assumption 1.a and Assumption 2.a hold.
(i) Assume that for a policy µ? there exist vectors h?1, h

?
2 ∈

Rn and scalars λ?1, λ
?
2 ∈ R satisfying the fixed point

equations:

T1,µ?h
?
1 = λ?11 + h?1, (13)

T2,µ?h
?
2 = λ?21 + h?2, (14)

µ? ∈ arg min
µ

[λ?2T1,µh
?
1 − λ?1T2,µh

?
2], (15)

where 1 ∈ Rn is the vector consisting of ones, in (15)
the arg min is considered for each component separately,
and Ts,µ is given in (4). Then, µ? is optimal for (11),
and the optimal value satisfies λ? = λ?1/λ

?
2.

(ii) Conversely, if µ? is a corner optimal policy, then it
satisfies (13)-(15).

Proof: Let µ? be the optimal policy for (11) i.e., λ2(µ?) >
0 and λ1(µ, i)/λ2(µ, i) ≥ λ1(µ?)/λ2(µ?), for every pol-
icy µ with λ2(µ, i) > 0. By Assumption 2.a, the point
(λ1(µ?), λ2(µ?)) lies in the interior of the second quadrant
(see Figure 2.a) and thus λ2(µ?) > 0. Hence, if µ? is optimal
then:

λ2(µ?)λ1(µ, i)− λ1(µ?)λ2(µ, i) ≥ 0, (16)

for every µ and i ∈ X with λ2(µ, i) > 0. Furthermore, if
there is an i ∈ X and a policy µ such that λ2(µ, i) ≤ 0 and
λ2(µ?)λ1(µ, i)− λ1(µ?)λ2(µ, i) < 0, then the feasible set D
intersects the third quadrant which contradicts Assumption 2
(see also Figure 2.a). Thus, if µ? is optimal then (16) holds
true for all the policies µ.

Conversely, assume that a policy µ? satisfies (16). Then
from Assumption 2.a we conclude that (λ1(µ?), λ2(µ?)) can-
not be in the first quadrant, because there are points of
D in the second quadrant, and thus (16) cannot hold. We
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then show that, (λ1(µ?), λ2(µ?)) cannot be in the fourth
quadrant. Assume the contrary i.e., λ1(µ?) > 0, λ2(µ?) < 0.
Using Assumption 2.a we consider a point (λ1(µ, i), λ2(µ, i))
in the second quadrant. Then, take the convex combination
[A(λ1(µ, i), λ2(µ, i)) + (1−A)(λ1(µ?), λ2(µ?))] ∈ D, where
A = λ1(µ?)/(λ1(µ?) − λ1(µ, i)). Observe that Aλ1(µ, i) +
(1−A)λ1(µ?) = 0. Furthermore:

Aλ2(µ, i)+(1−A)λ2(µ?) =
λ1(µ?)λ2(µ, i)− λ2(µ?)λ1(µ, i)

λ1(µ?)− λ1(µ, i)
.

Thus, since µ? satisfies (16) for all µ, i, it holds Aλ2(µ, i) +
(1 − A)λ2(µ?) ≤ 0, which violates assumption 2.a. Finally,
Assumption 2.a implies that (λ1(µ?), λ2(µ?)) cannot belong
to the third quadrant. Hence, (λ1(µ?), λ2(µ?)) should belong
to the second quadrant.

Dividing (16) by λ2(µ, i)λ2(µ?) we conclude that
λ1(µ, i)/λ2(µ, i) ≥ λ1(µ?)/λ2(µ?), for every policy µ with
λ2(µ, i) > 0.

Now (16) holds true for every µ if and only if:

µ? ∈ arg min
µ
{λ2(µ?)λ1(µ)− λ1(µ?)λ2(µ)}. (17)

(i) Let µ? a policy satisfying (13)-(15). Multiplying (13) by
λ?2 and subtracting (14) times λ?1, we get:

λ?2h
?
1(i)− λ?1h?2(i) = λ?2g1(i, u)− λ?1g2(i, u)+

+

n∑
j=1

pij(u)[λ?2h
?
1(j)− λ?1h?2(j)], (18)

for u = µ?(i). Thus, (18) and (15) imply (17). Hence, µ? is
optimal.

(ii) Using Proposition 1.(ii) and Theorem 1 we conclude
that there is an optimal policy µ? for (11) such that λ1(µ?, i)
and λ2(µ?, i) do not depend on i. Then, using (5) and (17)
we get (15). �

Remark 6: Proposition 2 characterizes corner optimal poli-
cies. It is possible that there exist deterministic stationary op-
timal policies which are not corner. The following proposition
shows that this does not happen in the generic case.

Proposition 3 (Non-Corner Optimal Policies are Non-
Generic): Suppose that Assumption 1.a holds. Then, the set
of vectors of the form [gs(x, u) : x ∈ X,u ∈ U, s = 1, 2] ∈
R2nnU such that there is a non-corner stationary deterministic
optimal policy for (11) has Lebesgue measure zero.
Proof : See Appendix C. �

B. The FPRVI Algorithm

The fixed point characterization (13)-(15) can be used to de-
rive a relative-value-iteration-type algorithm for Problem (11).

λ1

λ2

(b)

λ*

λ1

λ2

(a)

(λ1(μ*),λ2(μ*))
λ1

λ2

(c)

(λ1(μ*),λ2(μ*))

(λ1(μ*),λ2(μ*))

II I

III IV

II III I

III IV III IV

(λ1(μ,i),λ2(μ,i))

Fig. 2: The possible positions for (λ1(µ?), λ2(µ?)). The gray
area in these figures correspond to the feasible region D.
The three different pictures illustrate three possible positions
of (λ1(µ?), λ2(µ?)). The arrows correspond to the minus
gradient of the function f(λ1(µ), λ2(µ)) = λ2(µ?)λ1(µ) −
λ1(µ?)λ2(µ). Part (a) of the figure corresponds to the correct
position of the optimum. Parts (b) and (c) correspond to other
candidate solutions in the first and fourth quadrant, which
however cannot satisfy (16).

Starting from some initial guesses λ0
1, λ

0
2 ∈ R, h0

1, h
0
2 ∈ Rn

and an initial policy µ0, the iteration is given by:

λk+1
1 = (T1,µkh

k
1)(n), (19)

λk+1
2 = (T2,µkh

k
2)(n), (20)

hk+1
1 (i) = (T1,µkh

k
1)(i)− λk+1

1 , (21)

hk+1
2 (i) = (T2,µkh

k
2)(i)− λk+1

2 , (22)

µk+1(i) = arg min
u

[
λk2g1(i, u)− λk1g2(i, u)+

+

n∑
j=1

pij(u)(λk2h
k
1(j)− λk1hk2(j))

 , (23)

where i = 1, . . . , n and n is the last element of the state space
X . We will refer to this algorithm as the Fixed Point Relative
Value Iteration (FPRVI) algorithm. It is not difficult to see that
a fixed point of (19)-(23) satisfies (13)-(15).

The algorithm is intuitively easy to derive, does not have any
tuning parameters and works well for the numerical example
analyzed (Section VI). However, the analysis of this algorithm
is difficult. In the following section, we propose an alternative
characterization in terms of a single Bellman equation, which
leads to an algorithm with simpler convergence analysis. A
comparison of the two algorithms is presented in Remark 8.

V. BELLMAN EQUATION CHARACTERIZATION AND THE
RVI ALGORITHM

A. Bellman Equation Characterization of the Optimal Policy

In this section, we characterize the optimal policy and
optimal value in terms of a single Bellman-type equation.
This characterization leads to a simple value iteration type
algorithm, described in the next subsection.

Proposition 4 (Bellman Equation Characterization): Sup-
pose that Assumption 1.a and Assumption 2.a hold. Then:
(i) If λ? is the optimal value for the ratio cost function (11)

then:

min
µ

[λ1(µ)− λ?λ2(µ)] = 0. (24)
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(ii) There are at most two values of λ? satisfying (24).
(iii) A policy µ? is optimal for (11) if and only if:

µ? ∈ arg min
µ

[λ1(µ)− λ?λ2(µ)], (25)

where λ? is the optimal value.
(iv) If λ? is the optimal value for (11), then there exists a

vector h? ∈ Rn satisfying the Bellman equation:

h?(i) = min
u

g1(i, u)− λ?g2(i, u) +

n∑
j=1

h?(j)pij(u)

 .
(26)

Furthermore, among all the vectors h satisfying (26),
there is a unique one with h(n) = 0. Conversely, assume
that a vector h? and a scalar λ? satisfy the Bellman
equation (26), along with h(n) = 0 and denote by µ?

the policy attaining the minimum in (26). If additionally
λ2(µ?) > 0, then λ? is the optimal value and µ? is the
optimal policy.

Proof: (i) Assume that λ?, µ? is the optimal value-optimal
policy pair for (11). Then λ? = λ1(µ?)/λ2(µ?). Equation
(16) and the fact that λ2(µ?) > 0 imply that min

µ
[λ1(µ) −

λ?λ2(µ)] ≥ 0. Observe that substituting µ? in the place of µ
in the left-hand side of (16) we get 0. Thus, (24) holds true.

(ii) Consider the feasible region, illustrated in Figure 1.a.
Due to the fact that the feasible region D is a two-dimensional
compact convex set not containing the origin, there are at most
two lines passing through the origin which support the feasible
region (particularly the lines in Figure 2, (a) and (c)).

(iii) Observe that (17) and (25) are equivalent.
(iv) The direct part follows from (i). To prove the converse,

consider a scalar λ? and a vector h? satisfying (26). Consider
the problem of minimizing the LTA cost criterion:

λ1(µ)− λ? · λ2(µ) =

= E

[
lim
N→∞

1

N

N∑
k=1

(g1(xk, µ(xk))− λ?g2(xk, µ(xk)))

]
.

For this criterion there is a unique pair of a scalar θ and a
vector h(1), . . . , h(n) with h(n) = 0 such that:

θ + h(i) = min
u

g1(i, u)− λ?g2(i, u) +

n∑
j=1

h(j)pij(u)

 ,
for i = 1, . . . , n. Uniqueness and (26) imply that θ = 0 and
thus (24) holds true. Inequality λ2(µ?) > 0 and (ii) imply that
λ? is the optimal value. The characterization of the optimal
policy follows from (iii). �

Corollary 1: Suppose that Assumption 1.a and Assumption
2.b hold. Then (i)-(iv) of Proposition 4 hold true.

B. A Relative Value Iteration Algorithm

In this section, we propose a Relative Value Iteration (RVI)
algorithm for the problem, based on the single Bellman

equation characterization (26) and prove its convergence. The
iteration is given by:

θk+1 = min
u

g1(n, u)− λkg2(n, u) + τ

n∑
j=1

hk(j)pnj(u)

 ,
(27)

hk+1(i) = min
u

g1(i, u)− λkg2(i, u) + τ

n∑
j=1

hk(j)pij(u)

−
− θk+1, (28)

λk+1 = λk + γθk+1, (29)

where the initial conditions are λ0 = 0 and h0 = 0, γ is a
positive parameter (step size), 0 < τ ≤ 1 is a damping factor,
i = 1, . . . , n, and n is the last element of the state space X .
The idea of the algorithm is the following. Let us assume that
λ is ‘frozen’ (is held fixed). Then (27)–(28) corresponds to
a modified version of the relative-value-iteration-type scheme
for the cost function:

E[ lim
N→∞

1

N

N∑
k=1

[g1(xk, uk)− λg2(xk, uk)]]. (30)

The parameter τ is used to avoid cycling (periodic behavior)
in (27)–(28) and ensure convergence (for τ = 1 we retrieve
the usual relative value iteration scheme). Under (27)–(28),
the value of θk converges to the minimum value of (30). On
the other hand, it will be shown that the optimal value of (30)
is strictly decreasing in λ, for λ in an appropriate interval.
Thus, allowing λ to vary according to (29), if θk is positive,
then λ will increase and will eventually lead to a lower value
of θ. The following proposition shows the convergence of the
algorithm.

Theorem 2 (Convergence of the Algorithm): Suppose that
the Assumptions 1.b and 2.a hold and that τ < 1. Then, there
is a value γ̄ such that if γ ≤ γ̄, then the (hk, λk) converges
to (h?/τ, λ?) at the rate of a geometric progression.
Proof : See Appendix D. The proof is based on ideas of
singular perturbations (e.g. [30]) �

Remark 7: There are two basic differences of the RVI
algorithm described in this section and the Reinforcement
Learning algorithms for Semi-Markov Decision Processes (e.g.
[21]– [24]). First this algorithm can handle denominators
taking both positive and negative values. Second, since it
does not use stochastic approximation it is able to achieve a
faster (geometric) convergence rate. Despite the fact that this
change of the convergence rate is intuitively trivial, the proof
of convergence is quite different. With vanishing step-size the
ODE method applies. On the other hand, here we develop a
form of discrete time singular perturbation stability analysis.

Remark 8: Each iteration of the RVI algorithm ((27)-(29))
takes slightly less time and about half of the memory compared
to the FPRVI algorithm (Section IV-B). Furthermore, RVI has
guaranteed convergence. On the other hand, FPRVI computes
both λ1 and λ2 and does not need any tuning.
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VI. BATTERY ENERGY STORAGE SYSTEM APPLICATION

Consider a BESS connected to the grid1. The discrete time
dynamics for the State of Energy (SoE) of the battery is given
by:

x1
k+1 = x1

k + uk, (31)

where x1
k ∈ [0, 1] is the SoE i.e., the fraction of the energy

stored in the BESS over the maximum possible stored energy,
uk ∈ [−uM , uM ] is the charging or discharging power.

At the beginning of each time period, before the decision
uk is made, the grid operator sends a vector signal x2

k =
[lk pk dk]T to the BESS. In this vector, lk represents the power
which the system requires from the battery to absorb or release
(hereafter requested power), pk the price at which the battery
owner will be paid for the energy exchange, and dk the penalty
for deviating. The cost (which corresponds to the minus profit)
for time period k is given by:

g1(x2
k, uk) = dk|uk − lk| − pkuk.

We assume that pk has the same sign with lk and that dk > 0.
Thus the battery owner always has the motivation to use
a uk such that uklk ≥ 0 i.e., to follow the sign of the
grid operator signal. The cost g1(x2

k, uk) corresponds to the
deviation penalty minus the revenues the BESS owner receives
from the energy exchange. The vectors x2

k are modeled as
i.i.d random variables (that is x2

k and x2
k′ are independent for

k 6= k′ and have the same distribution). For the consistency
of the notation we write the evolution of the state variable x2

as x2
k+1 = wk. The system at time step k has state variable

xk = [x1
k (x2

k)T ]T and the dynamics is written in compact
form as xk+1 = f(xk, uk, wk).

In this example, we use a very simple Ah throughput model
(e.g. [34]) to predict the battery lifetime. Particularly, we
assume that after time interval k, the remaining useful life of
the BESS is reduced by an amount of g2(xk, uk) = c1+c2|uk|.
The first term corresponds to calendar aging and is indepen-
dent of the battery use, while the second term corresponds to
cycling aging. The lifetime of the BESS is thus given by:

T = min
t

{
t :

t∑
k=1

g2(xk, uk) ≥ R

}
,

where R is a large positive constant denoting the initial re-
maining useful life of the battery. The problem of maximizing
the revenues of the BESS over its lifetime can be stated in a
form similar to (8):

minimize
µ

Ja = lim
N→∞

E

[
T∧N−1∑
k=1

g1(xk, uk)

]
/R, (32)

where µ = (µ1, . . . ) and uk = µk(xk).
Let us observe that, if the SoE of the battery permits, the

battery manager can always choose an action uk making the
instant cost g1 non-positive. Thus, it is in the best interest of
the battery manager to try to make the lifetime T long, while
continuing profiting from its use. Since (31) is controllable and

1Usual applications are frequency regulation, peak shaving, energy arbi-
trage, microgrid operation in island mode, etc. (e.g. [31], [32], [33]) .

wk is i.i.d., this model satisfies Assumption 1.a. Furthermore,
since g2(u) ≥ 0 for all u, the model satisfies also assumption
2.a.

Remark 9: More complex degradation models, depending
non-linearly on the power, on the state of charge of the
battery, or its temperature can be considered. Furthermore,
the requested energy, and the price may have some more
complicated stochastic dynamics, depending probably on the
time of the day. In this section, however, we use the simplest
possible models to illustrate the application of the methods
developed in the previous sections.

We then apply both FPRVI and RVI algorithms to this
problem, compare their performance, compute the optimal
policy and then study its sensitivity to the aging parameters.

A. Optimal Control Computation

Let us first specify some parameters used in the numerical
computations. The SoE x1

k is bounded in [0, 1], the maximum
absolute power uM is 0.1, the calendar aging constant c1 is
0.01 and the cycling aging constant c2 is 1 (the cycling aging
is dominant). For simplicity, we assume that the requested
power lk is distributed uniformly in [−0.1, 0.1] and that the
price per unit energy pk and the deviation penalty are given by
pk = 100lk and dk = 1.2pk + 0.01 respectively. This choice
reduces the dimensionality of the state variable x2 to one. We
choose to discretize the SoE part of the state variable into 101
points and the x2 part into 21 points. Thus, the state space
has 2121 points.

We implemented both algorithms in Julia 0.6.2. Figure 3
compares their speed of convergence. Particularly, the vertical
axis of the figure corresponds to the logarithm of the relative
difference of the consecutive iterates of the algorithms. For
RVI this corresponds to the quantity:

log10

‖hk+1 − hk‖
‖hk‖

,

and for FPRVI to:

log10

‖[hk+1
1 hk+1

2 ]− [hk1 h
k
2 ]‖

‖[hk1 hk2 ]‖
.

Both algorithms converge linearly (geometrically). The runs
were performed in an Intel Core i5 CPU 750 @2.67GHz, 4GB
RAM desktop PC. The run time2 for 200 iterations of RVI
algorithm is 1.8s, while 200 iterations of the FPRVI algorithm
(Section IV-B) take 1.9s. The parameters for the RVI algorithm
are τ = 1 (there is no need to use τ < 1, because there is no
periodicity) and γ = 2 (experimentally tuned).

Figure 4 illustrates the optimal control law, which is piece-
wise linear with respect to the SoE. It is interesting that at
some combinations of SoE with requested power the optimal
control is to absorb exactly the power requested i.e., to use
uk = lk. In other combinations it is optimal to use zero
control, in anticipation of possible future losses and battery
aging. For example, for l = 0.05 and for a SoE 80% the

2In the implementation of both algorithms, we used a monotonicity property
of the optimal control law, which is specific to this problem. This reduces the
running time, but all the other results are not affected.
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Fig. 3: The convergence of the suggested methods. The vertical
axis represents the logarithm of the relative difference of two
consecutive iterations. The solid line corresponds to the FPRVI
algorithm (Section IV) and the dashed line to RVI algorithm.
Numerical results suggest that both algorithms have a linear
(geometric) convergence rate.

Fig. 4: The optimal control law for the battery Problem (32).
The horizontal axis is the State of Energy x1 and the different
lines correspond to different values of the requested power l.
We may observe that there is a symmetry around the point
(0.5, 0). Particularly, for l′ = −l and x1′ = 1 − x1 we have
µ?(x1′, l′) = −µ?(x1, l).

optimal action is to absorb no power. If the battery absorbed
some energy then it would increase the probability that, at
a subsequent time step, when the deviation penalty would
probably be higher, it would not have the ability to follow
the signal l, while at the same time it would certainly (with
probability 1) contribute to the battery aging at the current
time step.

We then show experimentally that, for a reasonable value
of R, the horizon is approximately deterministic. Assume that
R = 6000, which corresponds to a battery capable of 3000 full
cycles (a reasonable number of cycles for a stationary lithium
ion battery storage system). For the optimal policy µ?, the
expected time horizon is R/λ2(µ?) = 103294 time steps. On
the other hand, running 100 Monte-Carlo simulations using the
optimal policy and uniform initial conditions, we get a mean
time horizon of 103298 steps and maximum absolute deviation
of 554 steps or 0.53%. The root mean square deviation is 192
steps or 0.18%. These results agree with the intuition of the
approximately deterministic time horizon.

B. Quantifying Approximate Optimality
We then compare the value of the cost Ja under the

approximately optimal policy, Ja(µ?, x1, x2), computed in the
previous subsection, to the minimum value of Ja.

Fig. 5: The difference between the cost of the approximately
optimal policy µ? and the optimal policy µ̄, computed using
the SSP reformulation.

Using Remark 2, we first transform the Problem (32) into
a Stochastic Shortest Path (SSP) problem. Assume that all
the parameters are as in the previous subsection. Consider
an auxiliary state variable yk =

∑k
t=0 g2(uk). Since all the

possible values of g2(uk) are integer multiples of 0.01, the
state space for yk is Y = {0, 0.01, 0.02 . . . , R}.

To simplify the numerical computations, we downscale the
problem to R = 600. Thus, Y has 60001 elements and the
extended state space X̄ = X × Y has 127, 262, 121 elements.
The Bellman equation for this problem is:

J?SSP(y, x1, x2) = min
u

{g1(x, u)

R
Iy+g2(u)<R+

+
1

21

21∑
x′2=1

J?SSP(y + g2(u), x1 + uk, x
′2)
}, (33)

where I· is the indicator (characteristic) function. Furthermore,
J?SSP(y, x1, x2) = 0, for y ≥ R. The Bellman equation
has a special structure. Particularly, since always g2(u) >
0, the value of J?SSP(y, x1, x2) depends only on values of
J?SSP(y′, x′1, x′2) with y′ > y. This allows us to solve (33)
from y = R down to y = 0. Let us note that a similar property
was used in [13].

Denote by µ̄ the optimal policy computed for the SSP
problem. The optimal value J?a (x1, x2) of Ja is equal to
J?SSP(0, x1, x2). Figure 5 illustrates the relative difference:

∆ =
maxx1,x2

{
Ja(µ?, x1, x2)− Ja(µ̄, x1, x2)

}
minx1,x2 |Ja(µ̄, x1, x2)|

,

for several values of R. For R = 600 the value of the relative
difference ∆ is equal to 3× 10−5. Therefore, if instead of the
approximately optimal policy µ? we used the actual optimal
policy µ̄ the increase in our profits would be 0.003%.

Now regarding the computation cost, each iteration of
(33), requires almost the same number of operations as the
algorithm (27)–(29). For (27)–(29) we need in this example
200 iterations, whereas for (33) we need 60000 iterations (for
R = 6000, as in the previous subsection, we would need
600,000 iterations). Thus, algorithm (27)–(29) needs almost
300 times less operations than (27)–(29) (3000 times, for
R = 6000).
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Fig. 6: The optimal control law for different values of c. The
value of the optimal controls, for negative l can be deduced
from the symmetry observation in Figure 4.

C. Sensitivity to the Aging Parameters

Another interesting question is how the optimal control law
changes when the proportion of the calendar aging over the
cycling aging varies. We run the same optimization problem
with parameters c1 = c and c2 = 1 − c, for various values
of c. The results are illustrated in Figure 6. For c = 1, the
optimal control law is identical to the one we would obtain
by ignoring the aging and optimizing the long-term average
cost λ1. Indeed, calendar aging is independent of the control
actions. As c becomes smaller the cycling aging starts to
dominate. We may observe from the numerical results that
for smaller c the optimal control action has always smaller
absolute value.

Figure 7 illustrates the optimal control law in the form of
a heat map, for three different values of c. For a small (in
absolute value) requested power and for an almost full or an
almost empty battery, we observe an ‘opportunistic’ charging
or discharging. This behavior becomes more important, as the
weight of the calendar aging becomes larger (or equivalently
as we care less about aging). Furthermore, for small c, we
observe that there is a region where the BESS uses u = 0
i.e., does not charge or discharge, despite the existence of a
non-zero signal l. This turquoise (u = 0) region shrinks and
eventually disappears as the calendar aging becomes dominant.
Another region is the upper right and lower left part of the heat
maps, where the BESS is not able to follow the signal l and
thus we have saturation. Finally, there is a linear region where
the BESS follows exactly the requested power signal.

For this sensitivity analysis we used a finer discretization
with 201201 points to produce smoothly varying heat maps.
Particularly we discretized x1 variable in 1001 points and x2

in 201 points.

D. Comparing of the Proposed Solution to MPC

We then compare the control law computed in the previous
subsections to a Stochastic Model Predictive Control (SMPC).

Fig. 7: The optimal control law for different values of c.
Particularly, the first heat map corresponds to the case where
cycling aging is dominant, the third plot to the case where the
calendar aging is dominant (equivalently we do not care about
aging) and the second to a case in between.

The control action uk at time step k solves the problem:

minimize
µ

[
k+N0∑
k′=k

g1(xk, uk)

∣∣∣∣∣uk′ = µk′(xk′)

]
, (34)

where the optimization horizon N0 may take several possible
values. The parameters are as in subsection VI-A.

It is interesting that, if N0 = 1, the control law becomes:

uk =


lk if 0 ≤ xk + lk ≤ 1

−xk if xk + lk < 0

1− xk if xk + lk > 1

, (35)

that is, uk follows the requested signal lk as close as possible,
without violating the battery constraints. We call this the
‘myopic’ control law.

Figure 8 illustrates the cost Ja for the SMPC control laws
for several values of N0. Interestingly, the cost Ja is not
decreasing as the horizon increases. This phenomenon occurs
because (34) does not take into account the effect of the control
law to the problem horizon.

The use of the approximately optimal control law increases
the profits by 6.21% when compared with the ‘myopic’ control
law (35), by 4.02% when compared to the SMPC with N0 =
3, which happens to result the optimal cost among SMPC
controllers, and by 11.78% when compared with the SMPC
with long horizon N0.

VII. EXAMPLES WITH INDEFINITE DENOMINATOR

In this section, we present briefly a couple of examples
where the denominator g2 can take both positive and negative
values.

1) Maximum Range of an Electric Vehicle: Consider an
electric vehicle with regenerative breaking and let us study
the problem of designing a controller to achieve the longest
possible distance, before recharging the battery. In contrast
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Fig. 8: The cost of SMPC law for several values of the
optimization horizon N0, compared to the cost of the approx-
imately optimal control law obtained in Subsection VI-A.

with the BESS example, here the system manager (driver) can
choose actions that extend the remaining life of the system,
for example he/she can use regenerative breaking in a downhill
road. The velocity of the vehicle x1

k evolves according to New-
ton’s second law: x1

k+1 = x1
k +uk−FSlope(x

2
k)−FFriction(x1

k),
where we assume that the vehicle has unit mass, FSlope(x

2
k)

denotes the force to the vehicle due to the road inclination, x2
k

is the slope of the road, FFriction(x1
k) is the force due to friction

and uk is the force (from the road to the vehicle) due to the
use of the accelerator or the break. We model the slope of the
road x2

k as a sequence of dependent random variables evolving
according to: x2

k+1 = (1 − αx1
k)x2

k + αx1
kwk, where wk are

i.i.d. random variables (not necessarily zero-mean) and α is a
small positive constant. Let us denote the energy consumption
per time step by g2(xk, uk).

If the mean slope of the road is non-negative, then we expect
that the vehicle will consume eventually all the energy stored
in its battery. The time, at which this will happen, is given
by: T = inft

{
t :
∑t
k=1 g2(xk, uk) ≥ R

}
, where R is the

amount of energy initially stored in the battery of the vehicle.
The maximum range problem corresponds to the minimization
of the following quantity: minimize

uk=µk(xk)
− E

[∑T
k=1 x

1
k

]
.

2) Selling the Stock of a Non-Viable Retail Firm: Consider
a small retail business, which does not have any profits for
a long time, and decides to exit the market. This example
studies the problem of optimizing the revenue from selling the
remaining stock R of products. Assume that if the business
sets a price u1

k ∈ [0, 1] at time k, then the number of products it
sells per time step is given by d(u1

k). Furthermore, assume that
at time step k, the business is able to buy products at a price
xk which is random. However, as far as the firm is working,
it has to pay a constant amount of money c per unit time (e.g.
rent). Denoting by u2

k ∈ [0, 1] the number of products the
business buys at time step k, the cost per stage at time step
k is given by g1(xk, u

1
k, u

2
k) = xku

2
k − d(u1

k)u1
k + c and the

stock after step k is reduced by g2(xk, u
1
k, u

2
k) = d(u1

k)− u2
k.

Therefore, the problem of optimizing firm’s revenues, until the
stock is over has the same structure of the previous problems.

Remark 10: In this problem, we have assumed that the

business is not viable. However, it is probably profitable to
buy new products, if the price is low. There are policies which
make the remaining stock increase in the long run. However,
these policies produce long-term losses.

VIII. CONCLUSION

The paper considered the problem of the optimal control
of MDPs over a long and operation-dependent time horizon
and reduced it approximately to a problem involving the
minimization of the ratio of two long-time average-costs. The
optimal control law was characterized by appropriate sets
of Bellman-type equations. Particularly, two characterizations
were given. In the first one (fixed point characterization),
a control law is optimal if and only if there exist two
vectors satisfying a pair of coupled Bellman equations. In
the second characterization, a necessary condition is given
in terms of a single Bellman equation. This condition also
becomes sufficient if an additional inequality holds true. Based
on each characterization, we proposed a value iteration-based
algorithm (i.e. FPRVI and RVI algorithms). For the RVI
algorithm we also proved its convergence.

The proposed techniques were then applied to the problem
of the optimal management of a Battery Energy Storage
System. The results show that the optimal control law consists
of different behaviors, whose boundaries move according to
the aging parameters. In the future it would be interesting to
analyze more complex models for battery degradation or more
accurate stochastic models to describe the grid operator signal.

APPENDIX

A. Proof of Proposition 1

Consider the set of points in R2:

D0 = {(λ1(µ, i), λ2(µ, i)) : µ ∈ Ud, i ∈ X},

and denote by D its convex hull. Since the set of deterministic
policies Ud is finite, D0 is finite, and D is a compact and
convex.

(i) We use contradiction. Assume that there is a behavioral
policy µ, such that for some i, it holds (λ1(µ, i), λ2(µ, i)) 6∈
D. Then, there is a line strictly separating D and
(λ1(µ, i), λ2(µ, i)). Thus, there are constants c1, c2 such that:

c1λ1(µ, i) + c2λ2(µ, i) < c1λ̃1 + c2λ̃2, (36)

for all (λ̃1, λ̃2) ∈ D.
Consider the cost function:

lim
N→∞

1

N
E

[
N∑
k=1

(c1g1(xk, uk) + c2g2(xk, uk))

∣∣∣∣∣x0 = i

]
,

and denote by µ̃ ∈ Ud, its optimal policy. Then:

c1λ1(µ̃, i) + c2λ2(µ̃, i) ≤ c1λ1(µ, i) + c2λ2(µ, i). (37)

On the other hand, µ̃ is deterministic and thus
(λ1(µ̃, i), λ2(µ̃, i)) ∈ D0 ⊂ D. Hence, (37) contradicts
(36).

(ii) Denote by Dv = {A1, . . . , Am} the extremal points
(vertices) of D (see figure 9). Of course Dv ⊂ D0. Observe
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Fig. 9: The set D.

that D is the convex hull of Dv . Consider an Aj ∈ Dv .
Let AjB be a segment bisecting the angle ̂Aj−1AjAj+1, l
a line perpendicular to AjB and θ the angle of AjB from
the horizontal axis. Since Aj is an extremal point, the angle

̂Aj−1AjAj+1 is strictly less than 180◦. Thus, Aj = (λ̄1, λ̄2) is
the unique common point of line l and set D, and the unique
minimizer of the problem:

minimize
(λ̃1,λ̃2)∈D

{cos θλ̃1 + sin θλ̃2}.

Consider the cost function:

lim
N→∞

1

N
E

[
N∑
k=1

(cos θg1(xk, uk) + sin θg2(xk, uk))

]
,

and denote by µ ∈ Ud, its optimal policy. Weak accessibility
implies that the optimal value is the same for all the initial
conditions and thus the point (λ1(µ, i), λ2(µ, i)) lies on line
l for all i ∈ X . Thus, since (λ1(µ, i), λ2(µ, i)) ∈ D, and Aj
is the unique common point of l and D, λ1(µ, i) = λ̄1 and
λ2(µ, i) = λ̄2, for all i ∈ X . This completes the proof of (ii).

(iii) For every vertex Aj there is deterministic stationary
policy µj such that if Aj = (λ̄j1, λ̄

j
2), then λ1(µj , i) = λ̄j1,

λ2(µj , i) = λ̄j2, for all i ∈ X .
Consider a point (λ̄1, λ̄2) = A ∈ D. Then, since D is

the convex hull of Dv , there are scalars α1, . . . , αm such that
λ̄1 = α1λ̄

1
1 + · · ·+αmλ̄

m
1 and λ̄2 = α1λ̄

1
2 + · · ·+αmλ̄

m
2 . As-

suming that m ≥ 2, let us describe a policy µ̄ = (µ̄1, µ̄2, . . . )
such that the limits in definition of λ1(µ̄, i), λ2(µ̄, i) exist
and λ1(µ̄, i) = λ̄1, λ2(µ̄, i) = λ̄2. Policy µ̄ is separated in
different epochs. The ν-th epoch lasts for ν time steps. That
is, for ν(ν−1)/2 < k ≤ ν(ν+1)/2 we are in the ν−th epoch.
During the ν−th epoch µ̄k = µ1 for the first β1

ν = [α1ν] time
steps, then µ̄k = µ2 for the next β2

ν = [α2ν] time steps and
so on. Here [·] denotes the integer part. Finally, µ̄k = µm, for
the last βm = ν−β1−· · ·−βm−1 time steps. Denote by Iν,j
the set of time steps during the ν−th period, where µ̄k = µj .
That is, Iν,j = {ν(ν−1)/2+

∑j−1
j′=1 β

j′

ν +1, . . . , ν(ν−1)/2+∑j
j′=1 β

j′

ν }.
Let us derive some inequalities for the duration of Iν,j . For

j = 1, . . . ,m− 1 it holds:

0 ≤ αjν − βjν < 1.

Adding these inequalities and substituting
∑m−1
j=1 αj = 1−αm

and
∑m−1
j=1 βjν = ν − βmν we get:

0 ≤ βmν − ναm < m− 1.

Therefore, recalling that m ≥ 2, for all j = 1, . . . ,m it holds:

|βjν − ναj | < m− 1. (38)

Consider the sequences:

Sν,s = E

1

ν

ν(ν+1)/2∑
k=ν(ν−1)/2+1

gs(xk, uk)

∣∣∣∣∣∣uk = µk(xk)

 ,
for s = 1, 2. Then, Sν,s can be written as:

Sν,s =
1

ν

m∑
j=1

βjν S̄
j
ν,s, (39)

where:

S̄jν,s = E

 1

βjν

∑
k∈Iν,j

gs(xk, uk)

∣∣∣∣∣∣uk = µj(xk)

 .
We then prove the following claim:
Claim: The sequence Sν,s converges to λ̄s for s = 1, 2.

Combining this with (39) and (38), and using the fact that∑m
j=1 β

j
ν = ν, we get:

|Sν,s − λ̄s| ≤
m∑
j=1

|β
j
ν

ν
S̄jν,s − αj λ̄js| =

1

ν

m∑
j=1

|βjν S̄jν,s − ναj λ̄js|

≤1

ν

m∑
j=1

[βjν |S̄jν,s − λ̄js|+ |λ̄js||βjν − ναj |]

≤max
j
|S̄jν,s − λ̄js|+

m(m− 1)

ν
max
j
|λ̄js| (40)

Inequality (38) implies that βjν ≥ ναj−m+1. Thus, S̄jν,s →
λ̄js, for all j = 1, . . . ,m, s = 1, 2 and all x0. Hence, Sν,s →
λ̄s, which completes the proof of the claim.

Now, consider the sequence:

Ξs,i,N =
1

N
E

[
N∑
k=1

gs(xk, uk)

∣∣∣∣∣x0 = i

]
. (41)

To prove (iii) it is sufficient to show that Ξs,i,N → λ̄s, as
N →∞, for all i = 1, . . . , n and for s = 1, 2. First, observe
that the subsequence Ξs,i,ν̄(ν̄+1)/2 converges to the desired
limit, as ν̄ →∞. Indeed since:

Ξs,i,ν̄(ν̄+1)/2 =
2

ν̄(ν̄ + 1)

ν̄∑
ν=1

νSj,ν , (42)

The claim implies that Ξs,i,ν̄(ν̄+1)/2 → λ̄s.
Let us then examine Ξs,i,N for N between two successive

evaluations of the subsequence. If ν̄(ν̄ + 1)/2 ≤ N < (ν̄ +
1)(ν̄ + 2)/2 then:

Ξs,i,N − Ξs,i,ν̄(ν̄+1)/2 =
1

N

ν̄(ν̄ + 1)

2
Ξs,i,ν̄(ν̄+1)/2+

+
1

N
E

 N∑
k=

ν̄(ν̄+1)
2 +1

gs(xk, uk)

∣∣∣∣∣∣∣x0 = i

− Ξs,i,ν̄(ν̄+1)/2.

Thus:

|Ξs,i,N − Ξs,i,ν̄(ν̄+1)/2| ≤
∣∣∣∣ ν̄(ν̄ + 1)

2N
− 1

∣∣∣∣Ξs,i,ν̄(ν̄+1)/2+

+
ν̄maxi′,u gs(i

′, u)

N

Therefore, the variation of Ξs,i,N for N between ν̄(ν̄ + 1)/2
and (ν̄ + 1)(ν̄ + 2)/2 tends to zero as ν̄ →∞.
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B. Proof of Theorem 1

(i) Problem (11) is feasible, because for any i ∈ X there is
a policy µ̄ with λ2(µ̄, i) > 0. Due to Proposition 1, for all i
Problem (11) has the same value with:

minimize
(λ̄1,λ̄2)∈D

{λ̄1/λ̄2 : λ̄2 > 0}. (43)

Assumption 2 and the compactness of D imply that this
problem has a finite value (exists and it is greater than −∞).
Furthermore, since D is a compact polygon and λ̄1/λ̄2 is
quasi-linear function (e.g. [35]), λ̄1/λ̄2 is minimized on a
vertex of D. Therefore, there is a deterministic optimal policy,
according to Proposition 1.

(ii) Denote by λ? the optimal value of (11). The proof
proceeds in two discrete steps.

First, we show that Ja cannot be much smaller than λ?, for
a large value of R (Lemma 3). Conversely, it is shown that
a corner optimal policy for (10) has at most a slightly higher
cost when applied to (8) (Lemma 4).

Throughout the proof we use repeatedly Doob’s (sub-)
martingale optional stopping theorem (e.g. [36]).

Theorem 3 (Doob’s optional stopping theorem): Let vt be
an Ft-submartingale and T a stopping time such that E[T ] <
∞. Assume further that there is a constant C such that |vt+1−
vt| < C, for all t. Then:

E[vT ] ≥ E[v0].

The last relation holds as equality if vt is a martingale.
We use also the following lemma the proof of which is

almost identical to that of the optional stopping theorem. For
the shake of completeness we present its proof.

Lemma 1: Let Zk be a sequence of random variables and
assume that there is a constant C such that |Zk| < C. Assume
that T is a random time with E[T ] <∞. Then:

lim
N→∞

E

[
T∧N∑
k=1

Zk

]
= E

[
T∑
k=1

Zk

]
. (44)

Equation (44) asserts also the existence of the limit.
Proof : Since E[T ] < ∞, the random variable YN =∑T∧N
k=1 Zk converges almost surely to Y =

∑T
k=1 Zk, as

N → ∞. Furthermore, for all N the random variable YN
is bounded above by:

|YN | ≤ C
∞∑
k=1

IT≥k = CT,

where I· is the indicator (characteristic) function. But, since
E[T ] < ∞, the dominated convergence theorem applies and
it holds:

lim
N→∞

E[YN ] = E[Y ],

which is exactly (44). Additionally, dominated convergence
theorem proves also the existence of the limit. �

For an n-vector h, let us introduce the span semi-norm:

sp(h) = max
i
h(i)−min

i
h(i). (45)

Lemma 2: Suppose that assumptions 1 and 2 hold. Consider
any behavioral policy µ = (µ0, µ1, . . . ). If under µ:

L = lim inf
N→∞

E

[
T∧N−1∑
k=0

g1(xk, uk)

]
<∞,

then:
(i) The expected horizon is finite i.e., E[T ] <∞.

(ii) The limit in Ja exists and satisfies:

Ja(x0, µ) = lim
N→∞

E

[
T∧N−1∑
k=0

g1(xk, uk)/R

]
(46)

=E

[
T−1∑
k=0

g1(xk, uk)/R

]
. (47)

Therefore, the limit in the definition of Ja exists always (either
finite or infinite).
Proof : Consider closed third quadrant:

Q3 = {(x, y) ∈ R2 : x ≤ 0, y ≤ 0},

and the feasible set D. The set D is compact and convex
and Q3 is closed and convex. According to Assumption 2
D ∩Q3 = ∅. Thus, there is a strictly separating line between
D and Q3. This implies that there are constants c1, c2, c3 > 0
such that:

c1λ1(µ̄, i) + c2λ2(µ̄, i) ≥ c3, (48)

for all the stationary policies µ̄.
Consider the cost per stage ḡ(i, u) = c1g1(i, u) +

c2g2(i, u) − c3. Then, due to (48), the minimal LTA cost for
ḡ is non-negative. Thus, there is a pair λ̄ ≥ 0, h̄ ∈ Rn such
that:

λ̄+ h̄(i) = min
u

ḡ(i, u) +

n∑
j=1

pij(u)h̄(j)

 . (49)

Denote by Ft the σ algebra generated by (x0, u0, . . . , xt, ut),
and consider the stochastic process:

vt = h̄(xt) +

t−1∑
k=0

ḡ(xk, uk).

Observe that vt is a Ft-submartingale. Indeed:

E[vt+1 − vt|Ft] = −h̄(xt) + ḡ(xt, ut) +

n∑
j=1

pij(ut)h̄(j)

≥ λ̄ ≥ 0,

where for the first inequality we used the Bellman equation
(49). Let us consider the stopped process vTt , where Tt =
T ∧ t. Since, E[Tt] ≤ t, the optional stopping theorem implies
that E[vTt ] ≥ E[v0], or equivalently:

E

[
c1

Tt−1∑
k=0

g1(xk, uk) + c2

Tt−1∑
k=0

g2(xk, uk)− c3(Tt − 1)

]
≥

≥ E[h(x0)− h(xTt)].

Furthermore:

E[h(x0)− h(xTt)] ≥ −sp(h̄),
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where sp(h) is defined in (45). Thus:

E [Tt] ≤
c1
c3
E

[
Tt−1∑
k=0

g1(xk, uk)

]
+
c2
c3
E

[
Tt−1∑
k=0

g2(xk, uk)

]
+

+1 + sp(h̄)/c3.

Observe that
∑Tt−1
k=0 g2(xk, uk) ≤ R. Hence:

E [Tt] ≤
c1
c3
St + ∆,

where ∆ = c2
c3
R + 1 + sp(h̄)/c3 and St =

E
[∑Tt−1

k=0 g1(xk, uk)
]
.

There is a subsequence Stν which attains the limit inferior,
i.e., Stν → L <∞. Thus, there is a ν0 such that Stν ≤ L + 1,
for all ν ≥ ν0. Observe that, since Tt is non-decreasing in t,
it holds:

E [Tt] ≤
c1
c3

(L + 1) + ∆,

for all t. Thus, due to monotone convergence theorem we
conclude that:

E [T ] ≤ c1
c3

(L + 1) + ∆ <∞.

This completes the proof of (i) of the lemma. Then, (ii) is a
consequence of Lemma 1. �

Lemma 3: For every ε > 0 there is an R0 such that for any
R ≥ R0 and any behavioral policy µ = (µ0, µ1, . . . ) it holds:

λ? ≤ Ja(x0, µ) + ε,

where λ? is the optimal value of (11).
Proof: Throughout this proof we assume that uk is chosen
according to µk(xk). In the case where Ja(x0, µ) = ∞, the
lemma is trivially true. Thus, we assume that Ja(x0, µ) <∞.
According to Proposition 4 and Corollary 13, there is a vector
h? satisfying:

h?(i) = min
u

g1(i, u)− λ?g2(i, u) +

n∑
j=1

pij(u)h?(j)

 .
(50)

Consider the stochastic process:

vt = h?(xt) +

t−1∑
k=0

[g1(xk, uk)− λ?g2(xk, uk)].

Observe that vt is an Ft-submartingale. Indeed, due to (50)
it holds:

E[vt+1 − vt|Ft] = −h?(xt)+

+

g1(xt, ut)− λ?g2(xt, ut) +

n∑
j=1

pij(ut)h
?(j)

 ≥ 0.

Using optional stopping theorem we get E[vTt ] ≥ E[v0] =
E[h(x0)]. Therefore:

E

[
h?(xt) +

Tt−1∑
k=0

[g1(xk, uk)− λ?g2(xk, uk)]

]
≥ E[h(x0)].

3Let us first note that the proof of Proposition 2 and Proposition 4 do not
depend on the proof of (ii) of this proposition and thus this argument is not
circular.

Thus:

E

[
Tt−1∑
k=0

g1(xk, uk)

]
≥ λ?E

[
Tt−1∑
k=0

g2(xk, uk)]

]
− sp(h).

(51)
We examine the two cases of Assumption 2 separately.

Case 1: Assumption 2.a holds true.
In this case λ? < 0 and thus

∑Tt−1
k=0 g2(xk, uk) < R implies:

λ?E

[
Tt−1∑
k=0

g2(xk, uk)

]
> λ?R.

Combining this with (51) we get:

λ? ≤ E

[
Tt−1∑
k=1

g1(xk, uk)/R

]
+ sp(h)/R.

Taking the limit of the right-hand side we complete the proof
of the lemma for Case 1.
Case 2: Assumption 2.b holds true.

Taking the limits in (51) we get:

Ja(µ, x0) ≥ λ? lim
t→∞

E

[
Tt−1∑
k=0

g2(xk, uk)]

]
− sp(h). (52)

Using Lemma 1 we get:

lim
t→∞

E

[
Tt−1∑
k=0

g2(xk, uk)]

]
= E

[
T−1∑
k=0

g2(xk, uk)]

]
≥

≥ R−max
i,u

g2(i, u).

Combining this inequality with (52) and observing that λ? > 0
we get:

λ? ≤ Ja(x0, µ) +
maxi,u g2(i, u)λ?

R
+

sp(h)

R

This completes the proof. �
We then prove the converse:
Lemma 4: Let µ?, λ? be a corner optimal policy and the

optimal value for (11). Then, for any ε > 0, there is an R0

such that:
Ja(µ?, x0) ≤ λ? + ε,

for all x0 and all R ≥ R0.
Proof : (i) Since µ? is a corner policy, there is a pair h?2 ∈ Rn,
λ?2 > 0 satisfying:

λ?2 + h?2(i) = g2(i, µ?(i)) +

n∑
j=1

pij(µ
?(i))h?2(j).

Then, stochastic process:

vt = h?2(xt) +

t−1∑
k=0

[g2(xk, uk)− λ?2],

is a martingale. Similarly to the previous lemma we have
E[vTt ] = E[v0] = E[h?2(x0)]. Hence:

E

[
Tt−1∑
k=0

g2(xk, uk)− λ?2(Tt − 1)

]
= E[h?2(x0)]−E[h?2(xt)].
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Thus,

E[Tt] ≤
1

λ?2
(R+ sp(h?2)) + 1,

and monotone convergence theorem shows that E[T ] <∞.
For the optimal policy optimal value pair µ?, λ?, there is a

vector h? ∈ Rn such that:

h?(i) = g1(i, µ?(i))− λ?g2(i, µ?(i)) +

n∑
j=1

pij(µ
?(i))h?(j).

Then, stochastic process:

vt = h?(xt) +

t−1∑
k=0

[g1(xk, uk)− λ?g2(xk, uk)],

is a martingale. Similarly to the previous lemma we have
E[vTt ] = E[v0] = E[h?(x0)]. Hence:

E

[
Tt−1∑
k=0

[g1(xk, uk)− λ?g2(xk, uk)]

]
=

= E[h?(x0)]− E[h?(xt)].

Therefore:

E

[
Tt−1∑
k=0

g1(xk, uk)

]
≤ λ?E

[
Tt−1∑
k=0

g2(xk, uk)

]
+ sp(h?).

(53)

Case 1: Assumption 2.b holds.
In this case, using that

∑Tt−1
k=0 g2(xk, uk) ≤ R, and that λ? >

0, (53) becomes:

E

[
Tt−1∑
k=0

g1(xk, uk)

]
≤ λ?R+ sp(h?). (54)

and dividing by R and taking the limit we arrive to the desired
conclusion.
Case 2: Assumption 2.a holds.
Similarly with Case 2 of Lemma 3, we have:

lim
t→∞

E

[
Tt−1∑
k=0

g2(xk, uk)]

]
= E

[
T−1∑
k=0

g2(xk, uk)]

]
≥

≥ R−max
i,u

g2(i, u).

Therefore:

Ja(x0, µ
?) = lim

t→∞
E

[
Tt−1∑
k=0

g1(xk, uk)/R

]
≤

≤ λ? +
sp(h?)− λ? maxi,u g2(i, u)

R
.

This completes the proof. �
Proof of Theorem 1: Combining lemmas 3 and 4, for large

R and any policy µ, we get:

Ja(µ?, x0) ≤ λ? + ε ≤ Ja(µ, x0) + 2ε.

Thus, µ? is ε-optimal for large R. �

λ2

λ1

θ

Fig. 10: The set D and a line with λ̄1/λ̄2 constant.

C. Proof of Proposition 3

We show that in the generic case any deterministic static
optimal policy is a corner policy. We first show that for the
most of the values of the costs g1, g2 there is a unique optimum
in the Problem (43).

Lemma 5: Suppose that the controlled Markov chain is
weakly accessible (Assumption 1.a holds). Then, the set of
vectors of the form [gs(x, u) : x ∈ X,u ∈ U, s = 1, 2] ∈
R2nnU such that Problem (43) has multiple minima has
Lebesgue measure zero.
Proof : Observe that the value of λ̄1/λ̄2 is constant, in the
(λ̄1, λ̄2) plane, on half-lines starting from the origin. There-
fore, if (43) has multiple minima then they correspond to
a line segment i.e., the intersection of the half-line with D.
Furthermore, observe that λ̄1/λ̄2 = cot θ, where θ is the angle
of the half line with the horizontal axis (see Figure 11). Thus,
since cot(·) is strictly decreasing in (0, π), if (43) has multiple
minima they correspond to an edge of D. Therefore, there are
two vertices of D co-linear with the origin.

Using Proposition 1, if (43) has multiple minima then there
is a pair of policies µ, µ′ ∈ Ud and a pair of states i, i′ ∈ X
such that:

λ1(µ, i)

λ2(µ, i)
=
λ1(µ′, i′)

λ2(µ′, i′)
,

λ1(µ, i) 6= λ1(µ′, i′), λ2(µ, i), λ2(µ′, i′) > 0

(55)

The set of states X and the set of stationary deterministic
strategies Ud are finite. Thus, it is sufficient to show that for
any pair of states i, i′ and any pair of strategies µ, µ′ ∈ Ud,
(55) does not hold in the generic case.

Denote by gs = [gs(1, 1), . . . , gs(1, nU ), . . . ,
gs(n, 1), . . . , gs(n, nU )], where s = 1, 2, and n, nU the
cardinalities of the state space and the set of actions. Then,
using [20] (Theorem 8.1.1), for a state ī ∈ X and a policy
µ̄ ∈ Ud we have:

λs(µ̄, ī) = eTī P
?
µ̄Sµ̄gs,

where eī an n-vector with ī-th entry equal to one and all the
other entries equal to zero, P ?µ̄ is the limiting matrix of the
Markov chain under the policy µ̄ and Sµ̄ is an n×n|U | matrix
such that Sµ̄gs = [gs(1, µ̄(1)), . . . , gs(n, µ̄(1))]T . Since the
limiting matrix P ?µ̄ is a stochastic matrix and Sµ̄ has all its
entries equal to zero except of a single entry on each row
which is equal to one, the 1× nnU row vector:

dµ̄,̄i = eTī P
?
µ̄Sµ̄,
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has non-negative entries summing to one.
Assume a pair of policies µ, µ′ and a pair of states i, i′. If

(55) holds then:
dµ,ig1

dµ′,i′g1
=

dµ,ig2

dµ′,i′g2
6= 1. (56)

If dµ,i = dµ′,i′ then (55) does not holds. Thus, assume
dµ,i 6= dµ′,i′ .

Denote by by g1
1 the first entry of g1 and by gRest

1 the rest
of the entries. Similarly, denote by d1

µ,i, d
1
µ′,i′ the first entries

dµ,i, dµ′,i′ and dRest
µ,i , d

Rest
µ′,i′ the rest of the entries. Observe that

for all the values of gRest
1 and g2 there is at most one value of

g1
1 such that (56) holds which, whenever is defined, is given

by:

f(gRest
1 , g2) =

(dµ,ig2)dRest
µ′,i′g

Rest
1 − (dµ′,i′g2)dRest

µ,i g
Rest
1

(dµ′,i′g2)d1
µ,i − (dµ,ig2)d1

µ′,i′
.

Thus, the set of points in R2nnU , such that (55) holds is a
subset of the graph of f . Therefore, it has Lebesgue measure
zero ([37], exercise 3.10.52). �

To prove the proposition, assume that µ? is such a policy.
Proposition A implies that λ1(µ?, i)/λ2(µ?, i) has the same
(optimal) value for all i. But, since, µ? is not a corner policy,
there is a pair i, i′ ∈ X such that λ1(µ, i) 6= λ1(µ, i′).
This corresponds to a case where Problem (43) has multiple
minima. �

D. Proof of Theorem 2
The proof is based on a discrete version of singular pertur-

bation theory (e.g. [30]). The proof is follows 4 steps. First
we show that for λ close to λ?, the optimal policy µλ for (30)
is such that λ2(µλ) > 0. Then, for a fixed (frozen) value
of λ, we construct a Lyapunov function for the dynamics
(27),(28). Then, we prove some technical lemmas for the
Lyapunov function. Finally, we use these lemmas to construct
a composite Lyapunov function for (27)-(28).

1) Positivity of λ2(µλ): Assumption 1.a and the compact-
ness of the feasible region (see Figure 1) imply that there
is a positive constant ελ2

such that for each policy µ either
λ1(µ) ≥ 0 or λ2(µ) ≥ ελ2

. We state first the following lemma.
Lemma 6: There is a positive scalar δλ such that if λ > λ?−

δλ then the policy µλ minimizing (30) satisfies λ2(µλ) ≥ ελ2 .
Proof : Refers to Figure 11. Let F be optimal point of the
feasible set D (i.e. having the lowest λ1/λ2) closest to the
origin. Recall that D is a convex polygon. Let Q be the next
vertex of D counting counter-clockwise. From Proposition 4,
OF is perpendicular to the vector (−1, λ?). Observe, there
is a vector (−1, λ? − δλ), such that the vectors (−1, λ?) and
(−1, λ?−δλ) have angle less than or equal to ÔFQ. Thus, for
λ > λ?− δλ the extreme points of D in the direction (−1, λ)
will have λ2 > 0. The degenerate cases, where D is a point
or an interval follow easily. �

2) Construction of the Lyapunov Function: Let us introduce
some notation. The norm symbol ‖·‖ denotes the infinity norm.
For a scalar λ, denote by Tλ the Bellman operator:

(Tλh)(i) = min
u

g1(i, u)− λg2(i, u) + τ

n∑
j=1

h(j)pij(u)

 ,

λ*

O

F

λ1

λ2

Q

F

(-1,λ*)
(-1,λ*-δ)

λ

Fig. 11: The situation in Lemma 6.

and by Fλ the corresponding relative value iteration operator:

Fλh = Tλh− (Tλh)(n) · 1 + (1− τ)h.

Let hλ be the unique fixed point of Fλ. It is not difficult to
see that (λ, hλτ) satisfy the Bellman equation for (30). Denote
also by Ḡ the maximum value of |g2(i, u)|.

For a pair of scalars λ and λ′ and a pair of n-vectors h and
h′, operator Tλ satisfies the following pair of inequalities:

‖Tλh− Tλ′h‖ ≤ Ḡ|λ− λ′|, ‖Tλh− Tλh′‖ ≤ τ‖h− h′‖.
(57)

Similarly:

‖Fλh− Fλ′h‖ ≤ 2Ḡ|λ− λ′|, ‖Fλh− Fλh′‖ ≤ 2‖h− h′‖.
(58)

Inequalities (57), (58) will be repeatedly used throughout the
proof.

Denote by φkλ,h the vector defined by:

φk+1
λ,h = Fλφ

k
λ,h, (59)

φ0
λ,h = h.

Let qkλ,h be the difference of two successive iterates of φλ,h:

qkλ,h = φk+1
λ,h − φ

k
λ,h.

Finally, recall the the span semi-norm sp(·) of an n-vector h
introduced in (45). As an intermediate step for proving the
convergence of the usual value iteration method it has been
shown that there is a positive integer m and an ε > 0 such
that:

sp(qkλ,h) ≤ (1− ε)sp(qk−mλ,h ), (60)

for all k ≥ m (see for example [19], [20]). More importantly,
m and ε depend only on the properties of the controlled
Markov chain and not on the cost function. Thus, (60) is
satisfied for all λ, for the same values of m and ε. Using
(60), we can bound the evolution of sp(qkλ,h), in the form:

sp(qkλ,h) ≤ B(h, λ)ξk,

where ξ = (1− ε)1/m and:

B(h, λ) ≥ max
k=0,...,m

sp(qkλ,h)/(1− ε). (61)
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Based on this bound, a convergence rate for (59) can be
derived. It holds qkλ,h(n) = 0. Thus, mini{qkλ,h(i)} ≤ 0 and
‖qkλ,h‖ ≤ sp(qkλ,h). Therefore,

‖φkλ,h − hλ‖ ≤
∞∑
t=k

‖qtλ,h‖ ≤
B(h, λ)ξk

1− ξ
. (62)

We then derive a formula for B(h, λ) which does not depend
on λ. To this end, observe that for a vector h′ it holds:

‖Fλh′ − h′‖ ≤ ‖Fλh′ − Fλhλ‖+ ‖Fλhλ − h′‖.

Applying the second inequality of (58) to the first term of the
right-hand side and recalling that Fλhλ = hλ we get:

‖Fλh′ − h′‖ ≤ 3‖h′ − hλ‖.

Thus:

‖φk+1
λ,h −h

λ‖ ≤ ‖φk+1
λ,h −φ

k
λ,h‖+‖φkλ,h−hλ‖ ≤ 4‖φkλ,h−hλ‖.

Using iteratively this inequality, we get:

‖φk+1
λ,h −h

λ‖ ≤ 4k‖h−hλ‖, ‖φk+1
λ,h −φ

k
λ,h‖ ≤ 3·4k−1‖h−hλ‖.

(63)
Furthermore, sp(qkλ,h) ≤ 2‖qkλ,h‖. Thus, (61) is satisfied with:

B(h, λ) = 6 · 4m−1‖h− hλ‖ = B0‖h− hλ‖. (64)

Define K as the minimum positive integer such that ρ =
B0ξ

K/(1− ξ) < 1. Then the function:

V (h, λ) =

K−1∑
k=0

‖φkλ,h − hλ‖2, (65)

is a Lyapunov function for the dynamics (59). Indeed:

V (Fλh, λ)− V (h, λ) = ‖φkλ,h − hλ‖2 − ‖h− hλ‖2 ≤
≤ −(1− ρ)‖h− hλ‖2, (66)

where the last inequality holds true due to (62).
3) Technical Lemmas: The proof of Theorem 2 depends on

the following four lemmas.
Lemma 7: There is a positive constant L1 such that:

‖hλ − hλ
′
‖ ≤ L1|λ− λ′|,

for any λ, λ′

Proof: The limit of the dynamics φk+1
λ,h′ = Fλφ

k
λ,h′ is hλ

irrespectively of the initial condition h′. Using hλ
′

as the initial
condition, we get hλ = limk→∞ φk

hλ′ ,λ
.

Claim: If for some constant Γ it holds ‖h− hλ′‖ ≤ Γ then:

‖Fλh− h‖ ≤ 2Ḡ|λ− λ′|+ 3Γ, (67)

‖Fλh− hλ
′
‖ ≤ 2Ḡ|λ− λ′|+ 4Γ. (68)

To prove the claim, observe that:

‖Fλh− h‖ ≤ ‖Fλh− Fλ′h‖+ ‖Fλ′h− Fλ′hλ
′
‖+

+ ‖Fλ′hλ
′
− h‖.

Using both inequalities in (58) we get (67). Inequality (68)
is proved using (67) and triangle inequality, which completes
the proof of the claim.

We then apply (67), (68) in φk
hλ′ ,λ

. For k = 0, we have
‖φ0

hλ′ ,λ
− hλ′‖ = 0. Thus, applying (68) recursively we get:

‖φk
hλ′ ,λ

− hλ
′
‖ ≤ 2Ḡ|λ− λ′|4

k − 1

4− 1
< Ḡ|λ− λ′|4k.

Hence, applying (67) it holds:

sp(qk
λ,hλ′

) ≤ 2‖Fλφkhλ′ ,λ − φ
k
hλ′ ,λ
‖ ≤

≤ 4Ḡ|λ− λ′|+ 6ΓḠ|λ− λ′|4k < 2ΓḠ|λ− λ′|4k+1.

Then:

max
k=0,...,m

sp(qkλ,h)/(1− ε) ≤ 2̄G|λ− λ′|5m+1/(1− ε),

Therefore, using (62) with k = 0 and the fact that hλ =
limk→∞ φk

hλ′ ,λ
we get:

‖hλ − hλ
′
‖ ≤ Ḡ5m+1

(1− ε)(1− ξ)
|λ− λ′| = L1|λ− λ′|,

which completes the proof of the lemma. �
Lemma 8: Denote by v(h, λ) = (Tλh)(n). Then, if λ, λ′ >

λ? − δλ and h, h′ ∈ Rn, it holds:

|v(h, λ)− v(h′, λ)| ≤ ‖h− h′‖, (69)

ελ2
|λ− λ′| ≤ |v(hλ, λ)− v(hλ

′
, λ′)| ≤ Ḡ|λ− λ′|, (70)

ελ2
|λ− λ?| ≤ |v(hλ, λ)| ≤ Ḡ|λ− λ?|, (71)

(λ− λ?)v(hλ, λ) ≤ −ελ2
(λ− λ?)2. (72)

Proof: Inequality (69) is a direct consequence of (57).
To prove (70) consider a λ′ > λ. Recall that v(hλ, λ)
and v(hλ

′
, λ′) are the minimum values for problems in the

form (30). Denote by M the class of policies µ that satisfy
λ2(µ) ≥ ελ2 . Under any policy µ ∈M it holds:

λ1(µ)− λ′ · λ2(µ) + (λ′ − λ) min
µ′∈M

[λ2(µ′)] ≤ λ1(µ)−

− λ · λ2(µ) ≤ λ1(µ)− λ′ · λ2(µ) + (λ′ − λ) max
µ′∈M

[λ2(µ′)].

Taking the minimum with respect to µ, we get:

v(hλ
′
, λ′) + (λ′ − λ) min

µ′∈M
[λ2(µ′)] ≤ v(hλ, λ) ≤

≤ v(hλ
′
, λ′) + (λ′ − λ) max

µ′
[λ2(µ′)].

Furthermore, ελ2
≤ minµ′ [λ2(µ′)] ≤ minµ′ [λ2(µ′)] ≤ Ḡ.

Thus,

ελ2
(λ− λ′) ≤ v(hλ, λ)− v(hλ

′
, λ′) ≤ Ḡ(λ− λ′), (73)

if λ′ > λ. Similarly:

Ḡ(λ− λ′) ≤ v(hλ, λ)− v(hλ
′
, λ′) ≤ ελ2(λ− λ′), (74)

if λ′ ≤ λ. The last two equations prove (70).
To prove (71) recall that v(hλ

?

, λ?) = 0. Inequality (72)
follows similarly by multiplying (73) or (74) by λ− λ?. �

Lemma 9: There are positive constants L2, L3 such that:

|V (h, λ)− V (h, λ′)| ≤ L2|λ− λ′|2 + L3|λ− λ′|‖h− hλ‖
(75)
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Proof: It holds:

|V (h, λ)− V (h, λ′)| ≤
K−1∑
k=0

∣∣∣‖φkλ,h − hλ‖2 − ‖φkλ′,h − hλ
′
‖2
∣∣∣ .

Let us write each term of the summation as:∣∣∣‖φkλ,h − hλ‖ − ‖φkλ′,h − hλ
′
‖
∣∣∣ (‖φkλ,h−hλ‖+‖φkλ′,h−hλ

′
‖).

(76)
Applying twice the triangle inequality, the first factor of (76)
can be bounded by:∣∣∣‖φkλ,h − hλ‖ − ‖φkλ′,h − hλ

′
‖
∣∣∣ ≤ ‖φkλ,h−φkλ′,h‖+‖hλ−hλ

′
‖.

Claim: There is a positive constant L4 such that:

‖φkλ,h − φkλ′,h‖ ≤ L4|λ− λ′|,

for k = 0, . . . ,K.
To prove the claim, observe that ‖φ0

λ,h − φ0
λ′,h‖ = 0 and

that for any vectors h′, h′′, it holds:

‖Fλh′ − Fλ′h′′‖ ≤ ‖Fλh′ − Fλ′h′‖+ ‖Fλ′h′ − Fλ′h′′‖
≤ 2Ḡ|λ− λ′|+ 2‖h′ − h′′‖.

To prove the claim it is sufficient to apply recursively the last
inequality for k = 0, . . . ,K.

Using the claim, we conclude that:∣∣∣‖φkλ,h − hλ‖ − ‖φkλ′,h − hλ
′
‖
∣∣∣ ≤ (L1 + L4)|λ− λ′|, (77)

for k = 0, . . . ,K.
Using (62), (64) to the second factor of (76) we get:

‖φkλ,h − hλ‖+ ‖φkλ′,h − hλ
′
‖ ≤ B0

1− ξ
(‖h− hλ‖+ ‖h− hλ

′
‖)

≤ B0

1− ξ
(2‖h− hλ‖+ L1|λ− λ′|).

Combining the last inequality with (76) and (??) we con-
clude to the desired result. �

Lemma 10: If γk is small enough, then for a δ < δλ/2, there
is a k0 such that the state (λk, hk) satisfies ‖hk − hλk‖ ≤ δ
and λk > λ? − δ, for all k > k0.

Proof: Refer to Figure 12. For some k, denote by h = hk,
h+ = hk+1, λ = λk, λ+ = λk+1 and assume that 0 > λ >
λ? − δλ. The Lyapunov function (65) satisfies:

V (h+, λ+)− V (h, λ) =

= V (h+, λ+)− V (h+, λ) + V (h+, λ)− V (h, λ)

≤ L2γ
2v2(h, λ) + L3γv(h, λ)‖h− hλ‖ − (1− ρ)‖h− hλ‖2,

(78)

where (29), (75), and the fact that v(h, λ) = (Tλh)(n) were
used. Furthermore, using (69), (71) we get:

v(h, λ) ≤ ‖h− hλ‖+ v(hλ, λ) ≤ ‖h− hλ‖+ Ḡ|λ− λ?|.

Substituting back to (77), we get:

V (h+, λ+)− V (h, λ) ≤ −[(1− ρ)− L2γ
2 + L3γ]‖h− hλ‖2+

+ (L2γ + L3)γḠ|λ? − δλ|‖h− hλ‖+ L2γ
2Ḡ|λ? − δλ|2.

The last inequality implies that if γ is small enough, the
dynamics (27)-(29) will enter the gray area in Figure 12 and
remain there as soon as λ > λ?.

It will be show in the next subsection that the circle in Fig-
ure 12 is positively invariant (using Laypunov function(78)).
Furthermore, for γ small there is no possibility of moving
from the right to the left of the cycle within the gray area in
a single step. Since, the circle is positively invariant, λ will
remain greater than or equal to λ? − δλ. �

4) Construction of the composite Lyapunov function: Now
consider the dynamics (27)-(29) and the Lyapunov function
candidate:

Vc(h, λ) = V (h, λ) + (λ− λ?)2. (79)

For h = hk, λ = λk and h+ = hk+1, λ+ = λk+1 and
assuming that λ > λ? − δ we have:

Vc(h
+, λ+)− Vc(h, λ) = (V (h+, λ+)− V (h+, λ))+

+ (V (h+, λ)− V (h, λ)) + ((λ+ − λ?)2 − (λ− λ?)2) (80)

The first term of (79) is bounded above using Lemma 9 and
(63):

V (h+, λ+)− V (h+, λ) ≤
≤ L2(γv(h, λ))2 + L3γ|v(h, λ)|‖h+ − hλ‖
≤ L2(γv(h, λ))2 + 4L3γ|v(h, λ)|‖h− hλ‖.

The second term of the right-hand side of (79) is bounded
above by −(1− ρ)‖h− hλ‖2, due to (66). The last term may
be rewritten as [(γv(h, λ))2 + 2γv(h, λ)(λ− λ?)]. Thus:

Vc(h
+, λ+)− Vc(h, λ) ≤
≤ (L2 + 1)(γv(h, λ))2 + 4L3γ|v(h, λ)|‖h− hλ‖−
− (1− ρ)‖h− hλ‖2 + 2γv(h, λ)(λ− λ?) (81)

Using v(h, λ) = v(hλ, λ) + (v(h, λ) − v(hλ, λ)), along with
(69), (71) and (72) we get:

(v(h, λ))2 ≤ Ḡ2|λ− λ?|2+

+ ‖h− hλ‖2 + 2Ḡ|λ− λ?|‖h− hλ‖, (82)
v(h, λ)(λ− λ?) ≤

≤ −Ḡ′(λ− λ?)2 + ‖h− hλ‖|λ− λ?|. (83)

Substituting (81), (82) and the right-hand side inequality of
(71) into (80) we get:

Vc(h
+, λ+)− Vc(h, λ) ≤

≤ −‖h− hλ‖2[(1− ρ) + Ḡ2γ2(L2 + 1)]+

+ ‖h− hλ‖|λ− λ?|[2γ + 2Ḡγ2(L2 + 1) + 4L3γḠ]−
− |λ− λ?|2[2Ḡ′γ − Ḡ2γ2(L2 + 1)2],

which for appropriate positive constants C1, . . . , C5, can be
written as:

Vc(h
+, λ+)− Vc(h, λ) ≤ −

[
‖h− hλ‖|λ− λ?|

]
·

·
[
(1− ρ) + γ2C1 −C2γ − γ2C3

−C2γ − γ2C3 C4γ − γ2C5

] [
‖h− hλ‖
|λ− λ?|

]
.

Let us denote by A(γ) the matrix in the right-hand side of the
last equation. It is not difficult to see that there is a positive
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Fig. 12: The Lyapunov argument for Theorem 2

constant γ̄ such that for γ < γ̄ the matrix A(γ) is positive
definite. Furthermore, it is not difficult to see that fixing a γ,
such that 0 ≤γ≤ γ̄, there is a positive constant ε0 such that
A(γ) � ε0I , for all γ≤ γ ≤ γ̄. Therefore, λk → λ? and
hk → hλ? = h?/τ at a rate of a geometric progression.

Now due to Lemma 10, the state (λk, hk) will enter the
gray region in Figure 12. In this region, λ > λ? − δλ and the
Lyapunov analysis above holds true.
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